
0 tlEG 4 TEe In:. Jl or" Mgmt  Sci.. Vo[. 11. N o  5. pp 45"-1.68. 1983 i)305-0483 "3; 53 ,)4)- 0{~0 
Printed :n Grea~ Britain &It rights reserved Cop.~right , l~)S3 P~rgamon Press Lid 

Coordination of a Multidivisional 
Organization Through Two Levels 

of Management 

J O N A T H A N  F B A R D  

University of California, Berkeley, USA 

(Received October 1982,'in recised form March 1983) 

This paper develops the bilevel multidivisional programming problem (BMPP)  as a model for a 
decentralized organization. In particular, a hierarchical arrangement comprising one superior unit and 
M subordinate units is proposed where each unit is assumed to control a unique set of decision variables 
defined over jointly dependent strategy sets. Individual but interdependent objective functions are also 
assumed so that each unit may influence but not control another. In the formulation, decisions are 
made in two stages with top management given the first choice followed by the concurrent responses 
of the divisions. In this way it is possible to account for production externalities at the lower level 
and coordination activities at the higher level. As such, after outlining the major geometry of the linear 
case, the usefulness of the general model is discussed from a management perspective. Ramifications 
relating to opportunity costs, capacity utilization and computational requirements are presented and 
highlighted through a variety of examples. 

1. I NTRODUCTION 

DECISION-MAKING in large, hierarchical 
organizations rarely proceeds from a single 
point of view. Two of the most prominent 
aspects of such organizations are specialization 
closely followed by coordination [13]. The 
former arises from a practical need to isolate 
individual jobs or operations and to assign them 
to specialized units. This leads to de- 
partmentalization, however, to accomplish the 
overall task, the specialized units must be coor- 
dinated. The related process, also referred to in 
organization theory as control, divides itself 
quite naturally into two parts: the establishment 
of individual goals and operating rules for each 
member and the enforcement of these rules 
within the work environment. The first is re- 
ferred to as control-in-the-large and deals with 
the selection of appropriate divisional or lower 
level performance criteria and, more generally, 
the selection of the modes of coordination. The 
second is called control-in-the-small and relates 
to the choice of coordination inputs. 

An important control variable in the theory 
of departmentalization is the degree of self- 
containment of the organization units [9,13]. A 
unit is self-contained to the extent and degree 
that the conditions for carrying out its activities 
are independent of what is done elsewhere in the 
system. The corporate or higher level unit is 
then laced with the coordination problem of 
favorably resolving the divisional unit inter- 
actions. Mathematical programming has often 
been used as the basis for modeling these inter- 
actions with decomposition techniques (see. 
e.g., [6, 9, 12]) providing solutions for problems 
of large scale. The central idea underlying these 
techniques is very simple and can be envisioned 
as the following algorithmic process: top man- 
agement, with its set of goals, asks each division 
of the company to calculate and submit an 
optimal production plan as though it were 
operating in isolation. Once the plans are sub- 
mitted, they are modified with the overall 
benefit of the company in mind. Marginal profit 
figures are used to successively reformulate the 
divisional plans at each stage in the algorithm. 
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An output plan ultimately emerges which is 
optimal for the company as a whole and which 
therefore represents the solution to the ori~nal 
programming problem. 

Although this procedure attempts to mimic 
corporate behavior it fails on two counts. The 
first relates to the assumption that it is possible 
to derive a single objective or utility function 
which adequately captures the goals of both top 
management and each subordinate division. 
The second stems from lack of communications 
among the components of the organization; at 
an intermediary stage of the calculations there is 
no guarantee that each division's plans will 
satisfy the corporate constraints. In particular, 
if the production of some output by division k 
imposes burdens on other divisions by using up 
a scarce company resource, or by causing an 
upward shift in the cost functions pertaining to 
some other company operation, division k's 
calculation is likely to lead it to overproduce 
this item from the point of view of the company 
because the costs to other divisions will not 
enter its accounts. This is the classical problem 
of external diseconomies. Similarly, if one of 
division k's outputs yields external economies 
where a rise in its production increases the 
profitability of other divisions, division k may 
(considering just its own gains in its calcu- 
lations) not produce enough of this product to 
maximize the profits of the firm. This may result 
in a final solution that does not realistically 
reflect the production plan that probably would 
have been achieved had each division been given 
the degree of autonomy it exercises in practice. 

Another way of treating the multi-level na- 
ture of the resource allocation problem is 
through goal programming. Ruefli [16] was the 
first to apply this technique by proposing a 
generalized goal decomposition model. Free- 
land & Baker [11] expanded on this work and 
developed a model capable of representing a 
wide range of operational characteristics includ- 
ing informational autonomy, interdependent 
strategies, and 'bounded rationality' [13] or 
individual goals. Others [7,9, 14] have used 
combinations of the above strategies, to solve 
problems related to government regulation, 
distribution and control. The approach that we 
follow derives from the complementary notions 
of two-stage optimization [1,2, 3, 4, 5] and equi- 
librium analysis [20]. That is, decision-making 
between levels is assumed to proceed se- 

quentially but with some amount of indepen- 
dence to account for the divergence of corporate 
and subordinate objectives. At the divisional 
level each unit simultaneously attempts to max- 
imize its own production function and, in so 
doing, produces a balance of opposing forces. 

In the next section the structure of the bilevel 
multidivisional programming problem (BMPP) 
is examined and a precise mathematical 
definition given. In Section 3 the relationship 
between the multidivisional and equilibrium 
problem is discussed. A brief evaluation of the 
applicability of other multicriteria decision- 
making techniques is also offered. Section 4 
unifies the theories of equilibrium and bilevel 
programming while describing the management 
implications of the subsequent formulation, and 
outlining a number of solution techniques. Basic 
results are presented that, under certain condi- 
tions, establish the equivalence of the BMPP 
with a standard mathematical program. A linear 
case is examined in detail. Section 5 continues 
with a discussion of capacity utilization and 
contrasts the centralized and decentralized ap- 
proaches by way of example. Finally, some of 
the geometric properties of the linear BMPP are 
derived in the Appendix. 

2. DEVELOPMENT OF THE MODEL 

A distinguishing characteristic of multi-level 
systems is that the decision maker at one level 
may be able to influence the behavior of a 
decision maker at another level but not com- 
pletely control his actions. In addition, the 
objective functions of each unit may, in part, be 
determined by variables controlled by other 
units operating at parallel or subordinate levels. 
For example, policies effected by corporate 
management relating to resource allocation and 
benefits may curtail the set of strategies avail- 
able to divisional management. In turn, policies 
adopted at the lower levels affecting prod- 
uctivity and marketing may play a role in 
determining overall profitability and growth. 
Bialas & Karwan [4] have noted the following 
common features of multi-level organizations: 

(a) interactive decision-making units exist 
within a predominantly hierarchical struc- 
ture; 
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(b) each subordinate level executes its policies 
after, and in view of, decisions made at a 
superordinate leveh 

(c) each unit independently maximizes net 
benefits, but is affected by the actions of  
other units through externalities: 

(d) these extramural effects enter a decision 
maker 's  problem through his objective 
function and feasible strategy set. 

The need for specialization and decen- 
tralization has traditionally been met by the 
establishment of profit centers. In this context, 
divisions or departments are viewed as more or 
less independent units charged with the re- 
sponsibility of  operating in the best possible 
manner so as to maximize profit under the given 
constraints imposed by the corporate manage- 
ment. The problem of decentralization is essen- 
tially how to design and impose constraints on 
the department  units so that the well-being of 
the overall corporation is assured. The tradi- 
tional way to coordinate decentralized or- 
ganizations is by means of the pricing mech- 
anism; coordination is designed by analogy with 
the operation of a free market or competitive 
economy. Exchange of products between de- 
partments is allowed and internal prices are 
specified for the exchange commodities. The 
problem of effective decentralization reduces 
then to the selection of the internal prices. 

The above features are incorporated in the 
model we propose. The framework embodies a 
corporate management  unit at the higher level 
and M divisions or subordinate units at the 
lower level. The latter may be viewed as either 
separate operating divisions of  an organization 
or coequal departments within a firm, such as 
production, finance and sales. This structure can 
be extended beyond two levels (e.g., see [7, 8, 9]) 
with the realization that attending behavioral 
and operational relationships become much 
more difficult to conceptualize and describe. 

To formulate the problem mathematically, 
suppose the higher level decision maker  wishes 
to maximize his objective function F a n d  each of 
the M divisions wishes to maximize its own 
objective function f ' .  Control of the decision 
variables is partitioned among the units such 
that the higher level decision maker  may select 
a vector x ° e S ° c R  "° and each lower level 
decision maker  may select a vector x~e S ' ~  R ~', 

i = 1 . . . . .  M. Calling x = (x °. x ~ . . . . . .  ~.~t) and 
letting 

in the most general case we have F, 
J'~ . . . . .  f ~ t :R" - - - ,R~ .  It shall be assumed that 
the corporate unit has the first choice and selects 
a strategy x ° e S  °, followed by the M sub- 
ordinate units who select their strategies x '  ~ S ' ,  
simultaneously. In addition, the choice made at 
the higher level may affect the set of feasible 
strategies available at the lower level, while each 
lower level decision maker may influence the 
choices available to his peers. The strategy sets 
will be given the following explicit represent- 
ation: 

S '~ = {x~hg'~(x °) < O} 

S'= {x ' :g ' (x )~  0}, i = 1 . . . . . .  ~! 

where gO: R~o__~ R,,,) and g':  R~-~ R "', 

i -- 1 . . . . .  M. Notice that g '  is a function not 
only of x '  but each of the other decision vari- 
ables, call them x(  This suggests the useful 
notation x - (x ~, x;). 

In order to ensure that the problem is well 
posed it shall be assumed through the remainder 
of this paper that all the functions are twice 
continuously differentiable and that the sets S ~, 
i = 1 . . . . .  M, are nonempty and compact; i.e. 
the ith unit always has some recourse. With 
these assumptions the BMPP can now be 
defined: 

m a x  (F (x  °, x °) :g° (x° )  < 0) (1.1) 

where 

x ') ~ (x t . . . . .  x ~1) so lves  

m a x j ' ( x ' ,  x ;) "~ 

su b j ec t  to g ' ( x ' ,  x ' )  =< 0 I  i = I . . . . . .  ~,f. (I .2) 

If  M = 0, problem (1) reduces to a standard 
mathematical  program; if M = t the bilevet 
programming problem (BLPP) results; if (1.1) is 
removed we are left with an equilibrium pro- 
gramming (EP) problem [20]. The latter will be 
discussed in the next section. The meaning of 
the expression 'where x ° solves' derives from 
noncooperative game theory and has come to be 
used in the definition of a solution to the EP. 
This will be taken up in Section 3; the definition 
of a solution to the BMPP will be given in 
Section 4. 
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3. THE M U L T I D I V I S I O N A L  P R OB LEM  
A N D  E Q U I L I B R I U M  P R O G R A M M I N G  

For the moment  let us assume that a decision 
has been made by the corporate unit so x ° is 
now fixed for problem (1). In light of this 
decision each of the M divisions must concur- 
rently select their strategies so that each objec- 
tive function in (1.2) is maximized. But what 
does this mean? The common notion of an 
opt imum is based on a single objective, whereas 
in our problem a favorable result for one di- 
vision may be highly unfavorable for another. 
We are therefore forced to consider a different 
concept that leads to the idea of equilibrium. As 
has already been noted, in reality parallel di- 
visions are often in silent competition. In a 
decentralized system each unit is allowed to 
make some decisions but there is no single 
decision maker  who can dictate the final course 
of  action. Although power may not be equally 
distributed among the divisions, no one unit has 
complete control. 

In order to define a solution to (1.2) for x ° 
fixed we introduce the idea of equilibrium which 
is commonplace in such fields as economics and 
the physical sciences. Essentially, at equilibrium 
each decision maker  attains the best result pos- 
sible. A balance of opposing forces is produced 
so there is no desire on the part of  any individ- 
ual unit to alter its choice (we are tacitly exclud- 
ing the formation of coalitions and the use of  
side payments to improve individual payoffs). 
After rewriting each component  of  (1.2) as 
follows: 

m a x  ( f(x",  S ): gi(x ', x;) < 0) (2) 

and calling it subproblem i, we may state: 
Definition 1. Given ;U, if 2 i solves subproblem 

i (i = 1 . . . .  M), then 2 = (2 i,2 t) is called 
an equilibrium point. 

Explicitly then, an equilibrium point 
2 = (2', 2 r) solves (2) for i = 1 . . . . .  M so we are 
at a point of  stability. No incentive exists for 
any of the divisions to deviate from 2 i because 
each has optimized its individual objective func- 
tion. To avoid difficulties relating to the exis- 
tence of a solution it shall be assumed that for 
2 t fixed at its optimum, 2 i uniquely solves the 
problem faced by division i. If  this were not true 
there might exist additional points x ~ that solve 
(2) but do not necessarily yield unique objective 
function values for the other subproblems even 

when 5:; remains unchanged (see [3] for a further 
discussion of this matter). 

An alternative formulation of the BMPP 
could have been achieved by using the tech- 
niques common to multicriteria decision- 
making [15,18]. Two such methodologies that 
have been applied successfully follow com- 
pletely divergent paths. In one extreme, the 
problem is viewed mostly from the perspective 
of  a central decision maker  whose subjective 
value judgements form the basis of  all major 
action. The task then is to t ransla te  these judge- 
ments into some form of preference function. 
While this approach may be most suitable for 
use in less complex problems where decision 
criteria can, themselves, be treated as indepen- 
dent factors, its power is lost in the conftictual 
setting. The high level of  aggregation required in 
the formation stage effectively precludes the 
ability to confront the internal structure of the 
system directly. Perhaps the weakest feature of  
the preference approach,  though, is the necessity 
of  developing a hypothetical utility function 
that will accurately measure the concerns of  
each parallel unit. 

At the other extreme, the problem is viewed 
objectively by the systems analyst who then 
gives a multiobjective formulation which at- 
tempts to capture the relevant characteristics of  
the entire organization. The resultant model is 
then optimized in the sense that a set or subset 
of  efficient solutions is found. The term 'vector 
optimization'  appropriately reflects the nature 
of  this approach: the corresponding problem 
can be stated as follows [19]:  given a 
vector-valued criteria function f ( x )  = 
[ f l ( x )  . . . . .  f'~t(x)] defined on the set X where 
X = { x ~ R " : g j ( x ) < O , j = l  . . . . .  m} find all 
efficient points. 

Definition 2. A point x ° is said to be efficient 
if x ° e X and there exists no other feasible point 
x ~ X such that f ( x )  > f ( x  °) and f ( x )  # f (x°) .  

Succinctly, the problem may be written as: 

V m a x :  f ( x )  sub jec t  to x 8 X 

where the multidimensional aspects of  the 
decision criteria are now explicitly taken into 
account. The difficulty arising from this formu- 
lation, however, is that one person is still called 
upon to make the final selection. The set of  
efficient solutions rarely contains only one ele- 
ment so the decision maker  is faced with the 
impossible task of rendering an impartial deci- 
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sion. Even if a lexicographical ordering could be 
established among the set of  objectives repre- 
sented by f,  the uncooperative nature of  the real 
system suggests, in tact, that the true solution 
may not even be efficient (e.g., see [19]). 

The persuasiveness of  these arguments, 
coupled with recent advances in bilevel pro- 
gramming, have led us to the BMPP formu- 
lation. In the next section, we establish some of 
the properties of  this problem and describe a 
number of solution methodologies. 

4. M A N A G E R I A L  A N D  
C O M P U T A T I O N A L  I M P L I C A T I O N S  

In order to appreciate the management  impli- 
cations of  the BMPP, it is first necessary to 
transpose it into a more familiar form. The 
approach that we follow is based on the 
Kuhn-Tucker  system of equations associated 
with the M subproblems given in (2). If  problem 
(1) is tentatively viewed from the position of the 
higher level decision maker, the constraint 
region ([.2) can be thought of  as being implicitly 
defined by a string of optimization problems. 
This interpretation is still difficult to work with, 
however, but it does suggest an alternative repre- 
sentation of (1.2) admitting a standard mathe- 
matical programming formulation of (1). To 
some extent this can be realized by appending the 
lower level decision maker 's  Kuhn-Tucker  con- 
ditions to the higher level decision maker 's  
feasible set. In the presence of certain regularity 
conditions it can be shown that the solution to 
the resultant problem would also be a solution to 
the BMPP. Theorem 1 below summarizes this 
situation. The proof  will be omitted because it 
closely parallels that given in [3]. It should be 
noted that Aiyoshi & Schimizu [1] also in- 
vestigated a formulation similar to (1) but failed 
to recognize the transformation given by (3) be- 
low. Before stating the theorem, however, let us 
define what is meant by a solution to the BMPP: 

Definition 3. Let x* = (x *°, x *~) ~ S 

where 
S = £"~ S' .  

Now x* will be called a solution to the BMPP if: 

(a) x *~ is an equilibrium point of  (1.2) for 
x *° fixed; 

(b) for all .2 ~ S  such that (a) is true, 
F(x*) __> F(.2). 

Theorem 1 

Let a constraint qualification hold for each 
subproblem i in (1.2) when x r is fixed. A neces- 
sary condition that x* solves (1) is that there 
exists a w* _= R" such that (x*, w*) solves: 

m a x  F ( x  ) ( 3. l 

subject to: 

g'/(.v'l) < 0 (3.2) 

V,, p ( x  ) - w'V ,g ' (x  ) = 0 "] 13.3) 
] 

w ' g ' ( x  ) = 0 ~ i  
g ' ( x ) < - O {  = I . . . . . .  ~! (3.4) 

g'(x) < O |  (3.5) 
/ 

w ~ > 0 . J  (3.6) 

where w ~ is the m'-dimensional vector of  dual 
variables (shadow prices) associated with sub- 
problem i, w = ( w  L . . . . .  w~/), and V is the 
gradient operator.  

In general the solution to (3) provides an 
upper bound on the corporate objective func- 
tion F. If  'further restrictions are placed on the 
problem functions, however, sufficient condi- 
tions for optimality can be stated. We assume 
here that (1) has a solution, but as mentioned 
above this might not always be true. 

Corollary 1 

Let the conditions of  Theorem 1 hold and 
assume t h a t J  ' and _ g i  are concave in x * for x r 
fixed, i = 1 . . . . .  M. A necessary and sufficient 
condition for x* to solve (1) is that there exists 
a w* such that (x*, w*) solves (3). 

An important  implication of Corollary t is 
that it gives us the opportunity to obtain the 
shadow prices relating not only to the corporate 
objective but to each division's objective as well. 
A solution to (3) implicitly provides the stan- 
dard set of dual variables, v i (i = 1 . . . . .  M), 
accompanying constraint (3.5), while concur- 
rently yielding sensitivity information about di- 
vision i 's payoff with respect to incremental 
changes in its resources by explicitly computing 
w i. In mathematical  terms, if we let 
g ' (x)  = ~'(x) - b ~, then t ,~ = ~F/~b' com- 
ponentwise while w~= e f / e b  ~. As a con- 
sequence, resource allocation decisions can be 
made in full view of their expected effects on 
both the corporate and divisional objectives. 

In general, the relationship between w' and c* 
is not easy to establish. In situations where 
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degeneracy exists (a problem common to the 
decompositional formulation [12]) it is quite 
probable that one or more of the components of 
w' will be greater than zero while the corre- 
sponding components of v ~ will be equal to zero. 
From the corporate point of view, such allo- 
cations may not be desirable since they serve 
only to further a particular division's objective 
without improving the overall position of the 
firm. 

In Corollary l, explicit in the statement that 
x* solves (1) is the fact that x *~ is an equi- 
librium point of the M subproblems given in (2). 
In [20], Zangwill & Garcia specifically address 
the problem of  finding such a point after simi- 
larly deriving the above Kuhn-Tucker  system of 
necessary conditions. They contend that path 
following, a general technique for solving sets of  
nonlinear equations, can be used with great 
advantage to obtain equilibrium points. While 
this may be true for the simple EP, the presence 
of a higher level decision maker in our problem 
severely undermines its application here. Prob- 
lem (3) will therefore be treated as a nonlinear 
program. The fact that it is inherently non- 
convex does foreshadow difficulties, but, for 
some special cases (see [3, 4, 5]) solutions will be 
obtained directly. In particular, when all the 
functions in (1) are affine we get the linear 
BMPP: 

max (COx :A °x° N b °) (4.1) 
xn 

where x ° solves: 

max Cix } 

subject to A~x _< b~ i = 1  . . . .  M (4.2) 

where C~ ~ R ", b~ ~ R 'w, i = 0  . . . . .  M; 
A ° ~ R  ~°x"°, A ~ R  "~x", i = 1  . . . . .  M are con- 
stants and any nonnegativity constraints are 
subsumed in the appropriate matrices. 

A solution to (4) can be obtained by recasting 
it in the form of (3) and invoking Corollary I. If 
this is done, the resultant program would be 
linear in x and w save the complementarity con- 
straint (3.4); however, it is shown in the Appen- 
dix that the optimum of (4) occurs at a vertex of  
the explicit constraint region S = {x :A~x < b ~, 
i = 0,1 . . . . .  M }. For purposes of  planning, this 
result is noteworthy because it indicates the 
number of activities that will be binding at the 
solution. Such information is often useful in 
determining capacity utilization and in making 

capital budgeting decisions. From a strictly com- 
putational point of view, its significance becomes 
apparent when considering the possible applica- 
tion of linear programming techniques. In fact, a 
number of algorithms [4, 5] have already been 
developed for the BLPP to take advantage of this 
special structure and could well be adapted to the 
linear BMPP. Those techniques which have been 
successfully exploited include implicit basis 
search, vertex enumeration, and complementary 
pivoting, with the latter proving to be the most 
efficient. 

The following example illustrates the basic 
properties of the linear BMPP. It should be 
noted that, in general, the solution to (1) regard- 
less of  functional form will not be Pareto- 
optimal (i.e. efficient). This results from the fact 
that cooperation between and among levels has 
been expressly excluded from the model. 

Example 

Letting 

x o = (xo~, xo,), 

and 

x I = ( x l t , x l , ) ,  x " = x  2 

w I = ( w . .  wl.,, wl3, wl,), w" = (w_,t, w,_,, w.,3): 

max ( -2x0R + x0, + 3x H - x: :x0j + 2x 0, < 4) 
~ 0  

where x ~ solves 

max (x0~ + 2xH + 3xl: + x2), 
xl =>0 

subject to 

xm + 2xll - xl, < 6 

x~, +x , .  < 9; 

and x z solves 

max ( - x o ,  + 2x:) 
x:>O 

subject to 

- 2 x o ,  + xll - 3 x ,  < 12 

- x l 2  + 4 x ,  < 8. 

Solution: 

.~o = (0,  2) ,  .~t = (5 .8 ,  5 .6 ) ,  2-' = (3 .4 ) ;  

~'[ = ( 1 , 4 . 0 . 0 ) ,  ~,2 = (0,  0 .5 ,  0); 

~ = ( 2 ,  1.5, 0,0),  ~'- = (0,0, 0); 

P = 16, f '  = 28, f '-  =4 .8 .  

The solution was obtained by first transposing 
the problem to resemble (5) but with (5.4) re- 
formulated as a piecewise linear, separable rune- 
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tion. and then using a general branch and bound 
algorithm that finds global optima to nonlinear, 
separable programs (see [3]). A check of the 
above feasible regions at the solution indicates 
that five binding constraints exist and that their 
gradients are linearly independent. Because S, 
the joint constraint region, is a polyhedron in R 5. 
it follows that the solution is a vertex of  S. This 
verifies Theorem 3 of the Appendix. Further, an 
examination of the complementary sets of 
shadow prices brings to light the differences in 
marginal expectations. For Division 1, a one unit 
increase in the first resource will produce one 
additional unit of profit at the divisional level 
and two additional units of profit at the cor- 
porate level. For the second resource the ratio is 
reversed; one additional unit yields a divisional 
improvement of four units but a corporate im- 
provement of only 1.5 units. At Division 2, the 
shadow prices for the first resource are both zero 
while those for the second are 0.5 and 0, re- 
spectively. This means that a unit change here 
will produce a 0.5 unit change in payoff to the 
division but no change at the corporate level. 
The implication of this result is that it may be 
possible to reduce the availability of the second 
resource to Division 2 without adversely 
affecting the objective of the firm as a whole. 

Finally, it can be seen that if management 
attempts to maximize its overall objective func- 
tion, F, subject to the divisional constraints, but 
without regard to their specific objectives, the 
following settings result: 

x { ) = ( 0 , 2 ) ,  x t = ( 7 . 5 , 9 ) ,  x : = ( 0 ) ;  

_ F . = 2 4 . 5 ,  f ' = 4 2 ,  ] _ ' : = - 2 .  

This solution proves to be quite satisfactory to 
the corporate unit as well as Division l because 
both their payoffs improve substantially; how- 
ever, it fails to place the system in equilibrium. 
Division "~ in an effort to improve f2, will now 
exploit the slack in its second constraint by in- 
creasing the setting of.v+ from its current value of 
0, up to 4.25. This will subsequently induce a 
violation in Division l's second constraint 
thereby initiating a reduction, first in x~,_, next in 
x~t, and ultimately in x,.  This pattern may con- 
tinue indefinitely, or terminate should an equi- 
librium point exist. For this particular example, 
the cycle eventually converges to the exact solu- 
tion because the centralized and decentralized 
settings, denoted by x ° and ~?0 above, coincide. 
Note that the stipulation of non-cooperation, 

partially realized through the limited autonomy 
granted the divisions, prevents the achievement 
of the centralized solution despite the tact that its 
collective payoffs exceed those obtained t'rom the 
decentralized formulation. Nevertheless. with- 
out the introduction of side payments or cor- 
related strategies, top management's ability to 
directly control outcomes at either level in the 
organization is measurably weakened by the as- 
sumed reward system and hierarchical structure 
in place. 

Finally, it should be mentioned that whatever 
disadvantages exist in using the algorithm refer- 
enced in [3] for solving the linear BMPP derive 
from the general inefficiencies associated with all 
branch and bound techniques. ,Although it may 
be possible to accelerate its convergence by ex- 
ploiting the linear structure of(5), this remains to 
be done. A second approach which offers a sim- 
ilar promise involves the transformation of the 
linear BMPP into a bilinear programming prob- 
lem by moving the complementarity term {5,4) 
from the constraint region to the objective )'unc- 
tion (5.1) giving: 

( )) m a x  C(I.v - -  K )c'.';' 
,w \ :  + 1 

subject to (5.2), (5.3), (5.5) and (5.6) 

(9) 

where K is a large positive constant and 
s ' = A i x - b '  is an m'-dimensional vector of 
surplus variables, i = 1 . . . . . .  ~,.I. Although prob- 
lem (9) is still inherently nonconvex, it may be 
possible to solve it efficiently by adapting an 
extant algorithm (e.g [17]) to take advantage of 
the special nature of the bilinear term. 

5. EFFECTIVE CAPACITY 
UTILIZATION 

High productivity in any system requires that 
all resources be utilized in the most effective 
manner. In a linear programming framework 
this is not always assured because the designing 
of an optimal production mix (rather than 
finding a solution to the more common problem 
where the resource vector is taken as fixed) 
frequently leads to severe degeneracy. A second 
drawback of the traditional LP approach con- 
cerns the presence of multiple optimal solutions, 
only one of which may provide the best use of 
company resources. In the following example, 

our 115 i> 
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we demonstrate the nature of this problem and 
show how it may be overcome with the BMPP 
formulation. The Birch Paper case [10], which 
has often been used to illustrate other problems 
of decentralization, will serve as the model. 

The Birch Paper Company is an integrated 
firm producing paperboard at its Southern Di- 
vision, corrugated boxes at its Thompson Di- 
vision and specialized paper products at its 
Northern Division. Each unit is judged indepen- 
dently on the basis of its profit and return on 
investment despite the fact that much of its 
business is intra-company. Specifically, North- 
ern markets special display boxes which it de- 
signed in conjunction with the Thompson di- 
vision, who spent months perfecting 
manufacturing procedures and tooling up for 
production. Thompson, which sells boxes both 
to Northern and to outside firms may buy its 
paperboard from either an outside supplier or 
Southern, who in turn is free to market either to 
Thompson or to other manufacturers. 

The corporate unit has little control over 
divisional schedules, but may establish the inter- 
nal transfer prices (which are assumed to affect 
production capacity as well as divisional profits) 
in an attempt to influence the final product mix. 
Southern's out-of-pocket costs are $168 (all 
costs and prices are quoted for 1000 boxes) and 

faces a market price of $280. In addition, it may 
sell paperboard to Thompson for P~. The latter 
incurs S120 in costs processing the paperboard 
into boxes which it can sell for $450. Alterna- 
tively, Thompson may go to an outside supplier 
for S270. Northern values its special display 
boxes at S480 and may purchase its basic mate- 
rials from either Thompson at a price P3 or from 
an outside firm, The Eire Company, for $430. If 
this route is followed, Thompson will buy 'out- 
side" liners from Southern for P, and then sell 
them to Eire for $120 after incurring an addi- 
tional $25 for coloring and printing. 

This entire arrangement is shown in Fig. 1. In 
all, 11 variables have been identified at the 
divisional level and are listed in Table 1 along 
with their contribution margins and attendant 
costs. This information, coupled with a number 
of  restrictions on transfer pricing, leads to the 
following BMPP. 

Corporate unit 

Any number of objectives could be proposed 
for the firm as a whole, ranging from max- 
imizing the difference between revenues and 
costs to maximizing the flow of goods through 
the organization or maximizing the output of a 
particular division. For purposes of illustration, 
the latter has been adopted for Northern. In so 

BIRCH 
P . . . . . . . . . . . . . . . . .  

I 
I 
I 

I 

' t Southern 
I 
i 

I 
. I 

Outside supplTer I 

I Thompson 

. Northern 

• Outside market 
f o r  paperboard 

, Outside market 
f o r  boxes 

= Outside market 
f o r  paper products 

t _  . . . . . . . . . . . . . . .  . J  

FIG. I. The Birch Paper Company. 
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Division 

Southern 

Thompson 

Northern 

Outside Conmbut ion  
Purchased Sold Variabte selling Transfer Cost to mar ran to 

Product from to name price ~ price d iv is ion  "he division 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Paperboard Thompson S, - -  Pt 168 P - [68 
Liners - -  Thompson S, - -  P, 5.1. P, - 5..1. 
Paper board - -  Outside S 3 280 - -  t 68 I 12 
Boxes Southern Northern T, - -  - -  P: -,- t20 P+ - PI - 120 
Liners Southern Eire T. 120 - -  P+ + 25 95 - P. 
Boxes Southern Outside T~ 450 - -  PI + 120 330 - -  P t  

Boxes Outside Northern T+ - -  P3 390 P~ - 390 
Boxes Outside Outside T 5 -150 - -  390 60 
Paper products Thompson Outside , ' t  480 - -  P~ aS0 - P~ 
Paper products Eire Outside ,v, 480 - -  432 48 

i All prices and costs are per thousand bo,~es. 

doing, we will impose the restriction that the 
transfer prices, P = (Pt, P:, Ps), must be set so 
that the contribution margins shown in the last 
column of Table 1 for each division are non- 
negative. This leads to the following corporate 
model: 

s u b j e c t  t o :  

m a x  ?¢t + N,  
P 

P I - P 3  < - 1 2 0 ,  

168 < Pt < 330, 

54 < P: < 95, 

390 < P3 < 480;  

where: 
Pt = the price Southern charges Thompson 

for paperboard, 
P, = the price Southern charges Thompson 

for 'outside' liners, 
P3 = the price Thompson charges Northern 

for boxes. 

Notice that the objective function above does 
not depend directly on the choices of P but only 
on Northern's decision variables. The implicit 
nature of this relationship will become more 
evident upon examining the divisional prob- 
lems. 

Southern Division 

All three divisions are considered profit cen- 
ters with objective functions formulated accord- 
ingly. Individual capacities are restricted by the 
amount of activity required to produce the 
respective products. For Southern, it is assumed 
that its capacity expands directly with the trans- 
fer price P~ to reflect an increasing supply curve. 
The following model results: 

s u b j e c t  t o :  

s I +~s= + s 3 < P j l . 6 8 ,  

s I - T L - T 3 = 0, 

S , -  T , =  0. 

The first constraint is a production limitation 
with a minimum right hand side value of 100 
(realized when P~ is set equal to its lower 
bound). The second two constraints derive from 
material balance considerations. 

Thompson Division 

Thompson's  problem is similar to Southern's 
but with the additional restriction that it faces 
a maximum exogenous demand of 50,000 boxes. 
This leads to: 

m a x  ( P ~ -  Pt - 120)T~ + (95 - P,.)T,. 
r ~ 0  

+ (330 - P~)T3 + (P; - 390)T ,  + 6 0 T  s 

subject to: 

1 
Tt +~T.,+ 7"3+ T4 + Ts < P~/3.9. 

T 3 + T 5 < 50, 
- S  t + T~ + T~ = 0. 

- S , +  T.~= 0. 

Once again, the first two constraints are capac- 
ity and external sales restrictions, respectively, 
and the last two are the material balance equa- 
tions. 

Northern Division 

Northern is assumed to have a fixed capacity 
of 150 and will choose its product mix primarily 
on the basis of the price, Ps, indirectly for- 
warded by Thompson. The following problem 
results: 

m a x  (P~ - 168)S t + (P :  - 54)Sz + 112 S 3 m a x  (480 - P3)NI + 48 N:  
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subject to: 

.V~ . ,V: < i 50, 

-T t - T ~ . , v ~ = 0 .  

- T , -  N, =0, 

where the first constraint represents the capacity 
limitation and the second two repeat the mate- 
rial balance requirements. 

It is instructive to examine both the central- 
ized and decentralized versions of  this problem. 
A solution to the former is obtained by simply 
maximizing N~ + N, over all the constraints. 
However, because multiple opt ima are present 
there is no guarantee that the solution realized 
will satisfy secondary corporate goals such as 
full capacity utilization. A typical result might 
be: 

P = (350, 54, 450), s = (109.5, 40.4, 0), 
T = (109.6, 40.4. 0.0, 0). N = (109.6, 40.4); 

F=I50, ft=6795, f-'=1656, j'3 5208, 

which is seen to evidence 73.3 units of  slack at 
Southern and potentially another  7.7 units at 
Thompson should 1° 3 be increased to $480. 

By way of contrast, the BMPP formulation 
takes into consideration the goals of  each of the 
divisions and therefore yields a roundly better 
result: 

P = (330, 54,480), s = (21.7, 128.3, 117.2), 

T = (21.7, 128.3, 0, 0, 50), N = (21.7, 128.3); 

F=I50, ft=14474, f '=8911, fj=6158. 

From these settings we see that the system is 
now producing at maximum capacity and is in 
complete equilibrium. Finally, notice that if the 
slack were removed from the first solution by 
increasing 3'3 to 73.3, P3 to $450 and hence T 5 
to 7.7, the decentralized solution would still be 
uniformly more efficient. 

6. C O N C L U S I O N S  

the decision process in a hierarchical decen- 
tralized organization is both sequential and 
multiobjective. In most such organizations, it is 
either impractical or impossible for the higher 
level decision maker to impose his utility func- 
tion on the subordinate divisions. The main 
feature of  the proposed model is that it provides 
pairwise sensitivity information between cor- 
porate and lower level payoffs, while permitting 
each unit to pursue its individual set of goals. 

The bilevel multidivisional programming 
problem, which grew out of  the modeling pro- 
cess, was fashioned from a combination of 
bilevel and equilibrium programming consid- 
erations. The final program, however, is highly 
nonlinear and inherently nonconvex so a great 
deal of  work may be required to find its solu- 
tion. Nevertheless, a number of  special cases 
readily lend themselves to proven com- 
putational techniques, even in large scale. The 
linear BMPP, in particular, exhibits a series of  
properties common to the standard linear pro- 
gram which may be easily exploited in algo- 
rithmic development. 

The more general case is likely to prove more 
difficult to handle. It may be possible to devise 
an iterative scheme where information is passed 
back and forth between the two levels producing 
adjustments in strategies which eventually lead 
to a solution. Path following methods might be 
effectively employed for the computat ions asso- 
ciated with the lower level. Nevertheless, the 
best hope for solving the general BMPP proba- 
bly rests with recent advances in bilevel pro- 
gramming. At a minimum, if it is not possible 
to obtain a global solution, it should at least be 
possible to derive upper and lower bounds on 
unit objective functions and then perhaps use a 
goal programming scheme to improve the re- 
suits. A number of  such approaches are now 
being investigated. 

The basic problem of decentralized control, 
as viewed from the corporate level, is one of 
inducing its subordinate units to increase those 
activities which yield external economies and to 
decrease those which produce external dis- 
economies by just the right amount.  While the 
standard techniques of  decomposition have 
been used successfully in many areas, they gen- 
erally fail to address this problem in full. The 
model we have developed makes up for many of 
their inherent shortcomings by recognizing that 
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controlling all the variables, is composed of piecev, ise linear 
equality constraints.  

Theore??! 2 

Problem 14) is equivalent to maximizing the linear function 
C%: over a feasible region, call it .,e" comprised of S u and 
piecewise linear equality constraints. 

Proof  

To begin, let us use Theorem l to rewrite (4): 

max C°A " 

subject to 

{5.1} 

AO.v ° < b ° (5.2) 

w'a'= e' -] (5.3) 

w'(a'x ++arx r - b ' ) = O  t i =  l . . . . . .  ~[ (5.4) 
a+x' + a'2"; < b' t5.5) 

w' > 0 (5.6) 

where C' =- (c', c;) and A' =- [a',aq. From (5.3) it can be seen 
that B" must  be a vertex of the polyledron 
W ' =  [e}':e?'a" = ¢'% This implies, along with (5.5) and (5.6) 
that (5.4) can be expressed as: 

max ( ," la 'x ;  + a ( v ; -  b'): w'c- W') = 0 (6) 

or equivalently as: 

c'x' - P(x;) = 0, i = l . . . . . .  'v[ (7) 

where 

P(x') ~ max (w ' (a"x ; -  b ' ) :w '~  W') 

is a piece~ise linear, concave continuous function of x':. 
Therefore. (5) can be written as: 

max (C°x:x =_ S °, c;x' + P(x') = 0. i = 1 . . . . .  M). 

Because C°x is a linear (unction and bounded above on 
S by, say, max(C°x  :x ~ S), the following can be concluded. 

Corollary 2 

The solution to (4) lies at a vertex of S. 
Next, we will show that the solution vertex of ~ is also 

a vertex of S. This result points up the reason why linear 
p rogramming  techniques can be effectively applied to solve 
problem (4). 

Theorem 3 

The solution (x*) -=- (x*', x*;) to the linear BMPP occurs 
at a vertex of  S. 

Proof 

To begin, let (x 't, x ; ~ ) , . . . ,  (x '+, x ;q) be the distinct vertices 
of  S. Since any point in S may be written as a convex 
combinat ion of these vertices, let: 

APPENDIX 
THE G E O M E T R Y  OF THE L INE AR  BMPP 

The first property that we develop relates to the constraint 
region of the higher level decision maker. By noting that 
each subproblem in (4.2) is a linear program with corre- 
sponding feasible set S += {x':A;x < b+}. it can be shown 
that the combined constraint region of  (4), viewed as a 
standard optimization problem with the corporate unit 

where 

{x*',x*;)= y~ 4(.v':'). 
j=l 

i=! 

4 > 0 ,  j = l  . . . . .  ~/, q < q .  

It must  be shown that 7:/ = 1. To see this, let us write (7) at 
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the solut ion (x*' .  x*; )  for all i = 1 . . . . . .  ~4: 

0 = P(x* : )  ~- c ' x "  

J I 

by concavi ty  o f  P{x;) ,  

= y. g e ( x q  + ~'x',). 
I 

Now,  because  (xL x 7/) is in S for all i a n d j .  it follows from 
either (6) or  (7) that: 

P ( x  b) + c'.v" > 0, i = 1 . . . . .  M;  j = t . . . . .  ?/. (8) 

N o t h i n g  tha t  2: > 0. j = 1 . . . . .  ~, the equal i ty  in (8) m us t  
hold lest a cont rad ic t ion  result in the above  sequence.  T h e  
implicat ion f rom (7) is tha t  (x'/, x O) e S', j = I . . . . .  (1, and  
tha t  (x *~, x*:)  can be writ ten as a convex co m b in a t i o n  of  
poin ts  in o e. But because (x  *~, x*:)  is a vertex o f  S' it m us t  
be t rue tha t  7:/= 1. 

The  fact tha t  each vertex o f  ,g is also a ' ,ertex of  S leads 
to the following. 

Corollary 3 

S" is fo rmed from S O and  the faces o f  S. 
Lastly,  a special case o f  (4) is presented as a corol lary to 

T h e o r e m  1. 

Corollary 4 

The  linear B M P P  can be writ ten as a linear p r o g r a m  when  
A ~ = [ a ' , ~  ~] is given by the m ' x ( n ' + n : )  matr ix  [a ' ,0].  
i = 1  . . . . .  M. 

Proof  

The  result follows directly by first rewrit ing (4.2) in its 
equiva lent  form: max(c~xqa ' x  ' < b ~ - ?,~x~), where c ~ is the 
subvec tor  o f  C ~ co r r e spond ing  to x ~, and  then invoking 
dual i ty  theory.  The  complemen ta r i t y  term (3.4) may  thus  be 
wri t ten as w ~ ( b ' - g d x  ~) - c ' x ' =  0 which,  by a s sumpt ion ,  
reduces  to w~b ~ - cx  ~ = O. 


